Modelado de potencia en placas SBC : integración de diferentes generaciones Raspberry Pi

By: Contributor(s): Material type: ArticleArticleDescription: 1 archivo (1,2 MB)Subject(s): Online resources: Summary: Monitorear la potencia de los procesadores es una tarea importante para definir estrategias que permitan disminuir los gastos de energía en los sistemas informáticos. Hoy en día, los procesadores disponen de un elevado número de contadores que permiten monitorear eventos del sistema tales como uso de CPU, memoria, cache, entre otros. Anteriormente se ha demostrado que es posible predecir el consumo de aplicaciones paralelas a través de estos eventos, pero únicamente para una determinada arquitectura de placas SBC. El presente trabajo analiza la portabilidad de un modelo estadístico de predicción de potencia sobre una nueva generación de placas Raspberry. La experimentación destaca las optimizaciones llevadas a cabo con el objetivo de reducir sistemáticamente el error final de estimación en las arquitecturas analizadas. El modelo final arroja un error promedio de 4.76% sobre ambas placas.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number URL Status Date due Barcode
Capítulo de libro Capítulo de libro Biblioteca de la Facultad de Informática Biblioteca digital A1229 (Browse shelf(Opens below)) Link to resource No corresponde

Formato de archivo PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca)

Monitorear la potencia de los procesadores es una tarea importante para definir estrategias que permitan disminuir los gastos de energía en los sistemas informáticos. Hoy en día, los procesadores disponen de un elevado número de contadores que permiten monitorear eventos del sistema tales como uso de CPU, memoria, cache, entre otros. Anteriormente se ha demostrado que es posible predecir el consumo de aplicaciones paralelas a través de estos eventos, pero únicamente para una determinada arquitectura de placas SBC. El presente trabajo analiza la portabilidad de un modelo estadístico de predicción de potencia sobre una nueva generación de placas Raspberry. La experimentación destaca las optimizaciones llevadas a cabo con el objetivo de reducir sistemáticamente el error final de estimación en las arquitecturas analizadas. El modelo final arroja un error promedio de 4.76% sobre ambas placas.

Congreso Argentino de Ciencias de la Computación (25to : 2019 : Río Cuarto, Córdoba)