Comparison of HPC architectures for computing all-pairs shortest paths : Intel Xeon Phi KNL vs NVIDIA Pascal

By: Contributor(s): Material type: ArticleArticleDescription: 1 archivo (466,1 kB)Subject(s): Online resources: Summary: Today, one of the main challenges for high-performance computing systems is to improve their performance by keeping energy consumption at acceptable levels. In this context, a consolidated strategy consists of using accelerators such as GPUs or many-core Intel Xeon Phi processors. In this work, devices of the NVIDIA Pascal and Intel Xeon Phi Knights Landing architectures are described and compared. Selecting the Floyd-Warshall algorithm as a representative case of graph and memory-bound applications, optimized implementations were developed to analyze and compare performance and energy efficiency on both devices. As it was expected, Xeon Phi showed superior when considering double-precision data. However, contrary to what was considered in our preliminary analysis, it was found that the performance and energy efficiency of both devices were comparable using single-precision datatype.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number URL Status Date due Barcode
Capítulo de libro Capítulo de libro Biblioteca de la Facultad de Informática Biblioteca digital A1179 (Browse shelf(Opens below)) Link to resource No corresponde

Formato de archivo PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca)

Today, one of the main challenges for high-performance computing systems is to improve their performance by keeping energy consumption at acceptable levels. In this context, a consolidated strategy consists of using accelerators such as GPUs or many-core Intel Xeon Phi processors. In this work, devices of the NVIDIA Pascal and Intel Xeon Phi Knights Landing architectures are described and compared. Selecting the Floyd-Warshall algorithm as a representative case of graph and memory-bound applications, optimized implementations were developed to analyze and compare performance and energy efficiency on both devices. As it was expected, Xeon Phi showed superior when considering double-precision data. However, contrary to what was considered in our preliminary analysis, it was found that the performance and energy efficiency of both devices were comparable using single-precision datatype.

Congreso Argentino de Ciencias de la Computación (CACIC) (26to : 2020 : San Justo, Argentina)