Optimizing a gamified design through reinforcement learning : a case study in stack overflow
Material type:
Item type | Home library | Collection | Call number | URL | Status | Date due | Barcode | |
---|---|---|---|---|---|---|---|---|
![]() |
Biblioteca de la Facultad de Informática | Biblioteca digital | A1182 (Browse shelf(Opens below)) | Link to resource | No corresponde |
Browsing Biblioteca de la Facultad de Informática shelves, Collection: Biblioteca digital Close shelf browser (Hides shelf browser)
Formato de archivo PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca)
Gamification can be used to foster participation in knowledge sharing communities. While designing and assessing the potential impact of a gamification design in such a context, it is important to avoid work disruption and negative side effects. A gamification optimization approach implemented with deep reinforcement learning based on play-testing approaches helps prevent possible disruptive configuration and has the capability to adapt to different communities or gamification targets. In this research, a case of study for this approach is presented running over the Stack Overflow Q&A community. The approach detects the best configuration for a Contribution, Reinforcement, and Dissemination (CRD) gamification strategy using Stack Overflow historical data in a year. The results show that the approach funds proper gamification strategy configurations. Moreover, those configurations are robust enough to be applied along the time unseen periods.
Jornadas de Cloud Computing, Big Data & Emerging Topics (9na : 2021 : La Plata, Argentina)