Sistema de Archivos Paralelos con Aplicaciones de Machine Learning

By: Contributor(s): Material type: ArticleArticleDescription: 1 archivo (542,3 kB)Subject(s): Online resources: Summary: Se propone la investigación, análisis y evaluación del impacto de aplicaciones del tipo Machine Learning en un sistema de archivos paralelos, a nivel de rendimiento y uso de recursos. Para tal motivo se plantea el estudio del sistema de archivos paralelo BeeGFS, como infraestructura, y el uso de aplicaciones de Machine Learning como herramienta de benchmark para obtener los resultados necesarios y posterior análisis. Los sistemas de archivos paralelos nos permiten incrementar el rendimiento de los "File Servers" que requieren de mayor capacidad de respuesta a operaciones de lectura y escritura por accesos recurrentes y concurrentes a datos, donde los sistemas de archivos convencionales como "Network File System" no pueden satisfacer esta capacidad, entre otras grandes ventajas.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number URL Status Date due Barcode
Capítulo de libro Capítulo de libro Biblioteca de la Facultad de Informática Biblioteca digital A1322 (Browse shelf(Opens below)) Link to resource No corresponde

Formato de archivo PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca)

Se propone la investigación, análisis y evaluación del impacto de aplicaciones del tipo Machine Learning en un sistema de archivos paralelos, a nivel de rendimiento y uso de recursos. Para tal motivo se plantea el estudio del sistema de archivos paralelo BeeGFS, como infraestructura, y el uso de aplicaciones de Machine Learning como herramienta de benchmark para obtener los resultados necesarios y posterior análisis. Los sistemas de archivos paralelos nos permiten incrementar el rendimiento de los "File Servers" que requieren de mayor capacidad de respuesta a operaciones de lectura y escritura por accesos recurrentes y concurrentes a datos, donde los sistemas de archivos convencionales como "Network File System" no pueden satisfacer esta capacidad, entre otras grandes ventajas.

Congreso Argentino de Ciencias de la Computación (28vo : 2022 : La Rioja, Argentina)