000 01913naa a2200241 a 4500
003 AR-LpUFIB
005 20250311170359.0
008 230201s2012 xx o 000 0 eng d
024 8 _aDIF-M6647
_b6785
_zDIF005355
040 _aAR-LpUFIB
_bspa
_cAR-LpUFIB
100 1 _aTinetti, Fernando Gustavo
245 1 0 _aSequential optimization and shared and distributed memory parallelization in clusters :
_bn-body/particle simulation
300 _a1 archivo (532 KB)
500 _aFormato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca)
520 _aThe particle-particle method for N-Body problems is one of the most commonly used methods in computer driven physics simulation. These algorithms are, in general, very simple to design and code, and highly parallelizable. In this article, we present the most important approaches for the application of the three performance improvement areas on these algorithms when executed on high performance computing (HPC) clusters: 1) sequential optimization (a single core in a node of the cluster), 2) shared memory parallelism (in a single node with multiple CPUs available, just like a multiprocessor), and 3) distributed memory parallelism (in the whole cluster). For each one of the improvement areas we present the employed techniques and the obtained performance gain. Also, we will show how some (sequential/classical) code optimizations are almost essential for obtaining at least acceptable parallel performance and scalability.
534 _aConference on Parallel and Distributed Computing and Systems (24ta : 2012 nov. 12-14 : Las Vegas). Proceedings . ACTA, 2012.
650 4 _aCOMPUTACIÓN PARALELA
650 4 _aOPTIMIZACIÓN
650 4 _aGENERACIÓN DE CÓDIGO
700 1 _aMartín, Sergio M.
856 4 0 _uhttp://dx.doi.org/10.2316/P.2012.789-056
942 _cCP
999 _c55144
_d55144