000 | 01917naa a2200277 a 4500 | ||
---|---|---|---|
003 | AR-LpUFIB | ||
005 | 20250311171137.0 | ||
008 | 230201s2011 xx o 000 0 eng d | ||
024 | 8 |
_aDIF-M6753 _b6890 _zDIF006161 |
|
040 |
_aAR-LpUFIB _bspa _cAR-LpUFIB |
||
100 | 1 | _aDíaz, Alicia Viviana | |
245 | 1 | 0 |
_aQuality web information retrieval : _btowards Improving semantic recommender systems with friendsourcing |
300 | _a1 archivo (52,8 kB) | ||
500 | _aFormato de archivo: PDF. -- Este documento es producción intelectual de la Facultad de Informática - UNLP (Colección BIPA/Biblioteca) | ||
520 | _aWeb content quality is crucial in any domains, but it is even more critical in the health and e-learning ones. Users need to retrieve information that is precise, believable, and relevant to their problem. With the exponential growth of web contents, Recommender System has become indispensable for discovering quality information that might interest or be needed by web users. Quality-based Recommender Systems take into account quality criteria like credibility, believability, readability. In this paper, we present an approach to conceive Social Semantic Recommender Systems. In this approach a friendsourcing strategy is applied to better adequate recommendations to the user needs. The friendsourcing strategy focuses on the use of social force to assess quality of web content. In this paper we introduce the main research issues of this approach and detail the road-map we are following in the QHIR Project. | ||
534 | _aCongresso Ibero-americano de Telemática (CITA 2011). (6º : 2011 may.16-18 : Gramado, Brasil) | ||
650 | 4 |
_aREDES SOCIALES _94685 |
|
650 | 4 | _aFILTRADO | |
650 | 4 | _aONTOLOGÍAS | |
700 | 1 | _aMotz, Regina | |
700 | 1 | _aFernández, Alejandro | |
700 | 1 | _aLima, José Valdeni de | |
700 | 1 | _aLópez, Diego | |
856 | 4 | 0 | _uhttp://goo.gl/uSk51J |
942 | _cCP | ||
999 |
_c55943 _d55943 |