000 01412nam a2200229 a 4500
003 AR-LpUFIB
005 20250311170516.0
008 230201s2013 xxua r 000 0 eng d
020 _a9781449361327
024 8 _aDIF-M8481
_b8702
_zDIF007763
040 _aAR-LpUFIB
_bspa
_cAR-LpUFIB
100 1 _aProvost, Foster
245 1 0 _aData science for business :
_bwhat you need to know about data mining and data-analytic thinking
260 _aSebastopol :
_b O'Reilly Media,
_c2013
300 _axxi, 386 p. :
_bil.
500 _aIncluye índice y bibliografía.
505 0 _a Preface -- 1. Introduction: Data-Analytic Thinking -- 2. Business Problems and Data Science Solutions -- 3. Introduction to Predictive Modeling: From Correlation to Supervised Segmentation -- 4. Fitting a Model to Data -- 5. Overfitting and Its Avoidance -- 6. Similarity, Neighbors, and Clusters -- 7. Decision Analytic Thinking I: What Is a Good Model? -- 8. Visualizing Model Performance -- 9. Evidence and Probabilities -- 10. Representing and Mining Text -- 11. Decision Analytic Thinking II: Toward Analytical Engineering -- 12. Other Data Science Tasks and Techniques -- 13. Data Science and Business Strategy -- 14. Conclusion -- A. Proposal Review Guide -- B. Another Sample Proposal -- Glossary -- C. Bibliography -- Index
650 4 _aMINERÍA DE DATOS
653 _anegocios
700 1 _aFawcet, Tom
942 _cBK
999 _c57536
_d57536